Relationship between phosphorus release & sediment characteristics in Big Platte Lake, Benzie Co., MI

Michael Holmes

Phosphorus

- Essential element in all living organisms
 - Major bone/teeth constituent (CaPo₄)
 - Phospholipids
 - DNA/RNA structure
 - ATP

http://ghr.nlm.nih.gov/dynamicImages/understandGenetics

Anthropogenic and Natural Sources of Phosphorus

- Detergents
- Fertilizers
- Plant & animal matter
- Rock Minerals
 - Apatite
- Sediments

http://www.ux1.eiu.edu/~cfruf/bio3002/phosphorus_cycle.htm

Effects of Phosphorus Loading

- Limiting nutrient in most freshwater lakes
- Increased phosphorus reservoir in sediments
 - Oligotrophic=p-sink
 - Eutrophic=p-source

http://www.oberlin.edu

Effects of Phosphorus Loading

- Limiting nutrient in most freshwater lakes
- Increased phosphorus reservoir in sediments
 - Oligotrophic=p-sink
 - Eutrophic=p-source

http://www.oberlin.edu

Big Platte Lake

- Benzie County
- Oligo-mesotrophic
- Dimictic
- Hard-water, marl lake
- Anoxic hypolimnion~100 days a year
- Max depth ~30 m

Platte River Hatchery

- ~6 miles upstream of Platte Lake
- US 31 Highway; Honor, MI
- Established in 1928
- Michigan's main salmon hatchery since 1972
 - Coho
 - Chinook
- Recently renovated wastewater treatment system

http://www.michigan.gov/dnr

Hatcheries and Phosphorus Loading

- High fish densities
- Significant sources of phosphorus
 - Excess Food
 - Fish Waste
- Wastewater returned to streams

http://www.glenwoodnewmexico.com/fishhatchery08.jpg

Platte Lake Background & Rationale

- Phosphorus loading during the 1970's & 1980's
- Phosphorus deposited in Platte Lake sediments
- Monitor and describe phosphorus inputs to Platte Lake
 - Streams and hatchery
 - Septic systems and lawns
 - Sediments
- Magnitude of p-release from the sediment was unknown
 - Significant lake to lake variation
 - Most previous studies have focused on highly productive lakes

Platte River Hatchery

Discharge into Platte River

Physical & Biological Factors Affecting Sediment P-release

- Temperature
 - Microbial activity
 - Stratification
- Dissolved oxygen (DO)
 - Anoxia (<2 mg O²/L)</p>
- pH
- Grain size
- Wind/wave action
- Benthic macroinvertebrates
 - Bioturbation
 - Bioexcretion
 - Chironomids, amphipods, mayfly larvae, etc.

Summer Lake Stratification

http://waterontheweb.org/oldSite/under/parameters/art

http://www.jonesctr.org/research

Chemical Factors Affecting Sediment P-release

Inorganic composition

- Fe- & Mn- oxides
- Apatite --- $Ca_5(PO_4)_3(OH, F, CL)$
- Limestone --- CaCO₃
- Other clay complexes
 - Silicates
 - Aluminosilicates

Organic composition

- Quantity (% organic matter)
- Quality
 - Refractory compounds: Lignin, etc.

Platte River

Main Factors of Interest Influencing P-release

- Sediment Total Phosphorus (TP)
 - ightharpoonup
 ig
- Sediment Oxygen Demand (SOD)
 - decomposition/oxidation = ↓ DO
 - → SOD (↑ Anoxia) = ↑ p-release

http://lakespi.niwa.co.nz/shared/images

Big Platte Lake

Main Objectives

- Characterize sediment at different depths and locations in Platte Lake
- 2) Quantify p-release from Platte Lake sediments
- 3) Compare Platte Lake to other lakes

Research Questions

- What factors are influencing p-release?
 - Is oxygen depletion influencing p-release?
 - Are there seasonal differences in SOD & p-release?
 - Do SOD & p-release differ between locations?
 - Do TP & organic matter (OM) influence p-release?

Research Outline

- Initial sediment survey
 - Determine variability between locations
- SOD experiments
 - Measure oxygen uptake rates
 - Compare SOD vs. depth and season
- P-release experiments
 - Compare oxic & anoxic rates
 - Compare anoxic p-release vs. depth and season
 - Compare OM and TP vs. depth

Initial Sediment Survey

- 13 locations
 - Mini-ponar grab sampler
- Parameters measured:
 - % organic matter
 - Total phosphorus (mg/g dry)
 - Grain size (% sand/ % silt/ % clay)
 - water
 - COD (chemical oxygen demand)
 - TKN (total kjeldahl nitrogen)

Relationships with Depth

Small Grains (<0.05 mm)

Total Phosphorus

Organic Matter

Initial Conclusions

'% silt & clay', OM, & TP increase with depth

TP shows the strongest relationship with depth

 High variability between locations (especially <15 m)

Research Outline

- Initial sediment survey
 - Determine variability between locations
- SOD experiments
 - Measure oxygen uptake rates
 - Compare SOD vs. depth and season
- P-release experiments
 - Compare oxic & anoxic rates
 - Compare anoxic p-release vs. depth and season
 - Compare OM and TP vs. depth

General Methods

- P-release and SOD
 - 4 locations of different depth
 - Modified Kajak-Brinkhurst corer
 - Collected lake water
 - 0.45 µm Millipore filter
 - FLW=Filtered Lake Water
 - Cores incubated @ at 7.5°C ±2°C
 - Rates determined from multiple samples or measurements
- OM & TP
 - Mini-ponar grab sampler

SOD Core Setup

- Bubbled w/ air for 2 hours
- Hydrolab 4a Surveyor and mini-sonde
- D.O. measured every 15 minutes for 8 hours
- FLW Blanks

P-release Core Setup

- Anoxic=Nitrogen; Oxic=Air
 - For duration of experiment
- 50 ml samples removed on alternate days for 10 days
 - Volume replaced with FLW
- TDP measured in overlying water
- FLW Blanks

Determination of SOD Rates

- Slope of best fit line (mg O²/L/hour)
 - Corrected for slope of blank (FLW)
 - Corrected for ratio of overlying water volume (L) to sediment surface area (m²)
 - SOD (g O²/m²/day)

Example plots from 11-14-04

Determination of P-release Rates

- Slope of best fit line (µg P/ day)
 - Cumulative TDP release
 - Corrected for TDP in replacement water (FLW)
 - Final rate (µg P/ m² /day)
 related to sediment surface
 area (m²)
 - Final rates not corrected for release rates in blank cores

Example plots from 11-14-04

Typical SOD and P-release Rates

SOD

- Oligotrophic-
 - **<1** g O²/m²/day
- Eutrophic/hypereutophic-
 - **>5** g O²/m²/day

Anoxic p-release

- Oligotrophic
 - **<1,000** µg P/m²/day
- Eutrophic
 - **>10,000** μg P/m²/day
- Hypereutrophic
 - **>20,000** μg P/m²/day

Statistics

- Randomized Block ANOVA
 - Response: % OM; TP (mg/g dry);
 P-release (µg P/m²/day); SOD (g O²/m²/day)
 - Treatment Factor: Location/Depth
 - Blocking Factor: Date
 - Tukey Pairwise Comparisons

Sediment Oxygen Demand

Overall Results

Seasonal Comparison

Date: p=0.000, Depth: p=0.005 (RB-ANOVA)

28 m site higher SOD than 5 m & 12 m sites (Tukey P-C)

August: higher SOD than other 3 dates (Tukey P-C)

Oligotrophic:

<1 g O²/m²/day

Eutrophic:

>5 g O²/m²/day

Oxic/Anoxic P-release Comparison

Summary of Anoxic P-release

Depth: p=0.000, Date: p=0.295 (RB-ANOVA)

28 m site higher anoxic p-release than 12 m & 22 m sites (Tukey P-C)

Oligotrophic: <1,000 μg P/m²/day Eutrophic: >10,000 μg P/m²/day

Seasonal Comparison of Anoxic P-release

Organic Matter Content

Depth: p=0.000 (RB-ANOVA)

All 4 sites were significantly different from one another, with the exception of 28m-22 m (Tukey P-C)

Total Phosphorus Content

Depth: p=0.000 (RB-ANOVA)

28 m site greater than other 3 sites (Tukey P-C)

22 m site greater than 5 m site (Tukey P-C)

Comparisons to Other Lakes

- Torch Lake ~100 m
 - Low productivity
 - Low OM & TP
 - Low Anoxic p-release
- Coldwater Lake ~15 m
 - Moderate-high productivity
 - High OM & TP
 - High Anoxic p-release

P-release Conclusions

- Oxic p-release was low or negative for all sites
- Deepest site (28 m) showed greatest anoxic p-release
 - Highest TP
 - Oxic microlayer
- Low anoxic p-release at 22 m site
 - More P bound to organics?? (High OM)
 - Higher carbonates??
 - TP threshold for p-release??
- Potential for anoxic p-release from shallow sites (5 m)
 - Anoxia unlikely under in situ conditions
 - Bioturbation?? Bioexcretion??
 - Amphipods; mayfly larvae

Oxic Microlayer

P-release Conclusions

- Oxic p-release was low or negative for all sites
- Deepest site (28 m) showed greatest anoxic p-release
 - Highest TP
 - Oxic microlayer
- Low anoxic p-release at 22 m site
 - More P bound to organics?? (High OM)
 - Higher carbonates??
 - TP threshold necessary for p-release??
- Potential for anoxic p-release from shallow sites (5 m)
 - Anoxia unlikely under in situ conditions
 - Bioturbation?? Bioexcretion??
 - Amphipods; mayfly larvae

http://www.chesterfieldlodge.fsnet.co.uk/

http://www.glerl.noaa.gov/seagrant/GLWL/Benthos

Overall Conclusions

- TP & OM increase with depth
- Highest SOD in late summer
 - Prolonged anoxia
- Major contribution of phosphorus from Platte Lake sediments occurs during anoxia primarily @ deepest location
- Overall contribution of phosphorus from sediments is minor in comparison to more eutrophic lakes

Suggestions for Future Work

- Differential p-extractions
 - P bound to CaCO₃, Fe, organics, etc.,
 - May explain low p-release at 22 m site
- More focus on sediment near 28 m site
 - What depth is anoxic p-release reduced?
 - -25 m ??
 - -20 m??
 - Are long-term anoxic p-release rates decreasing?

Big Platte Lake

Questions??

Sleeping Bear Dunes National Shoreline

Lake Michigan